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I. INTRODUCTION

Aggregation, coagulation, or agglomeration are kinetic
phenomena in which clusters bond irreversibly to form
clusters of indefinitely growing mass. A detailed model
of merging of two clusters into a single cluster should in-
corporate the mass, position, velocity (or diffusion rate),
and even geometrical characteristics of each cluster, to-
gether with the precise merging mechanism. Such a de-
tailed description is well beyond theoretical analysis. The
most natural approach assumes that the merging of two
clusters of masses x and y into a cluster of mass x + y
occurs with a rate kernel K(x, y). The cluster densities
then evolve according to the Smoluchowski coagulation
equations [1]. This theoretical framework [1–5] has found
numerous applications in physical chemistry [6], as well
as in astronomy [7] and mathematics [8].

Characterizing a cluster by a single parameter, its
mass, may indeed be a drastic oversimplification. For
instance, two clusters with a similar mass can be sub-
stantially different. Additionally, the character of a clus-
ter may be altered every time it undergoes aggregation,
and for example, it may become less likely to partici-
pate in further aggregation events. In this paper, we
investigate situations where active clusters may become
passive after merging events. A concrete example where
active and passive clusters coexist are multi-phase coars-
ening processes in one dimension. Indeed, upon merging,
domain walls may remain active or become passive de-
pending on the phase of their neighboring domains [9–11].
Another example is polymerizations of linear polymers.
Here, if the end monomers can be chemically active or in-
ert, newly produced polymers may become passive. Scal-
ing properties and numerical studies of several stochastic
aggregation problems will be presented in the following
article [12].

Specifically, we consider a class of models where newly-
formed clusters remain active with a fixed probability p;
otherwise, they become passive in the sense that they
never aggregate again. As the fate of newly-formed clus-
ters is determined stochastically, we term this process
stochastic aggregation. Given a fixed probability for ac-

tive clusters to become passive, all clusters eventually
become passive, and the system freezes. Our goal is to
determine the time dependent distributions of active and
passive clusters, as well as the final mass distribution of
passive clusters.

Within the standard framework [1,2], it has long been
recognized that the Smoluchowski master equations are
tractable for three particular kernels: K(x, y) = 1, x+ y,
and xy [3]. Exact results have also been found for lin-
ear combinations of the above solvable kernels [13,14],
and for one nonlinear interpolation between the constant
and sum kernels [15]. As will be shown below, stochastic
aggregation is solvable for the three classical kernels.

For instance, in the simplest case of mass-independent
aggregation rates, we find that Pk, the final mass distri-
bution of passive clusters, is scale free, i.e, Pk ∼ k−γ .
Since γ = 2/p, the entire range of decay exponents
2 < γ < ∞ is realized by tuning 0 < p < 1. Similar
behavior emerges in a dual fragmentation process where
newly-formed fragments may become passive [16]. In
contrast, both the sum and the product kernels are char-
acterized by final mass distributions which are suppressed
exponentially for large masses. Nevertheless, over an in-
termediate size range, an algebraic decay with a fixed
decay exponent may occur. The time-dependent behav-
ior is governed by an algebraically growing size scale, and
it can be cast as either a scaling or a scaling-like form.
In general, the growth law for this scale is not universal
as it depends on the parameter p.

The rest of this paper is organized as follows. In Sec. II,
we define the model and outline the general framework.
Exact solutions of the master equations for the cases
of constant, product, and sum kernels are presented in
Secs. III, IV, and V, respectively. The results are sum-
marized and discussed in Sec. VI.

II. THE MODEL

Consider the initial conditions where all clusters are ac-
tive and have the same mass, which can be set to unity
without loss of generality. Then, active monomers ag-
gregate to form dimers, and so on. After an aggregation
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event, the newborn cluster remains active with proba-
bility p, or becomes passive with probability q = 1 − p.
In the latter case, the cluster does not undergo further
aggregation.

Let K(i, j) be the rate by which clusters of mass i
and clusters of mass j aggregate, and let Ak (Pk) de-
note active (passive) clusters of mass k. The stochastic
aggregation process can be symbolically written as

Ai +Aj
pK(i,j)−→ Ai+j , Ai +Aj

qK(i,j)−→ Pi+j . (1)

We use the notations Ak(t) and Pk(t) to denote the den-
sity distributions of active and passive clusters at time
t. The master equations describing the time evolution of
the system read

dAk
dt

=
p

2

∑
i+j=k

K(i, j)AiAj −Ak
∑
j≥1

K(k, j)Aj ,

dPk
dt

=
q

2

∑
i+j=k

K(i, j)AiAj . (2)

The convolution terms are proportional to p and q, re-
spectively, reflecting the probabilities of remaining active
and becoming passive after each aggregation event. The
master equations are subject to monodisperse initial con-
ditions

Ak(0) = δk,1, Pk(0) = 0. (3)

One may verify that the overall mass is conserved, i.e,∑
k≥1 k[Ak(t) + Pk(t)] = 1.
We are interested in the temporal behavior of the mass

distributions of both active and passive clusters, and in
the final distribution of passive clusters. An important
feature of the model is that the number densities of ac-
tive and passive clusters are ultimately related through-
out the evolution. Indeed, in each aggregation event, the
total number of active clusters is reduced by 1 with prob-
ability p, or by 2 with probability q; hence on average,
it reduces by 1 + q. Simultaneously, each aggregation
event increases the total number of passive clusters by q
on average. Thus, the following properly weighted com-
bination of the number densities A(t) =

∑
k≥1Ak(t) and

P (t) =
∑
k≥1 Pk(t) is conserved

qA(t) + (1 + q)P (t) = const. (4)

This second conservation law follows from the rate equa-
tions as well. However, it holds generally for stochastic
aggregation processes, even when the master equations
(2) do not apply.

Assuming that initially there were no passive clusters,
P (0) = 0, and setting the initial cluster density to one,
A(0) = 1, we see that Eq. (4) gives a neat expression for
the final number density of passive clusters

P (∞) =
q

1 + q
. (5)

Additionally, mass conservation implies
∑
k kPk(∞) = 1,

and therefore the average mass of a passive cluster is
(1 + q)/q. A q−1 divergence occurs in the q → 0 limit,
corresponding to traditional aggregation. Remarkably,
the final density (or equivalently, the average mass) is
independent of the details of the model including the ag-
gregation kernel, the clusters’ transport mechanism, or
the system’s dimensionality.

In what follows, we solve the master equations for
three different kernels: constant K(i, j) = 2, product
K(i, j) = ij, and sum K(i, j) = i + j. Although we
restrict our attention to monodisperse initial conditions,
our techniques apply to arbitrary initial conditions. Fur-
thermore, the nature of the solutions extends to compact
initial distributions.

III. CONSTANT KERNEL

The constant kernel is the most widely used one. It
has been applied to diffusion limited coalescence, for ex-
ample. In traditional aggregation with K(i, j) = const,
the typical mass grows linearly with time, and the mass
distribution is exponential. We shall see below that the
latter assertion also applies for stochastic aggregation.

We conveniently set K(i, j) = 2, and the master equa-
tions read

dAk
dt

= p
∑
i+j=k

AiAj − 2AAk,

dPk
dt

= q
∑
i+j=k

AiAj . (6)

The number densities of active and passive clusters can
be obtained directly. The reaction proceeds through two
channels: A + A → A with rate p and A + A → P with
rate q, and therefore, the number densities obey

dA

dt
= −(1 + q)A2,

dP

dt
= qA2. (7)

Solving these equations subject to the initial conditions
A(0) = 1 and P (0) = 0 gives

A(t) =
1

1 + (1 + q)t
, P (t) =

qt

1 + (1 + q)t
. (8)

Indeed, the relation (4) between A and P holds, and the
final density P (∞) = q/(1+q) is recovered. Additionally,
the density of active clusters decays algebraically with a
universal exponent: A ∼ t−1.

One can also study the mass density of active clus-
ters, M(t) =

∑
k≥1 kAk(t). This quantity has a nice

probabilistic interpretation: it equals the survival prob-
ability of an active monomer, initially present in the
system. In other words, it is the probability that such
monomer belongs to an active cluster at time t. From
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Eq. (6) we find that the mass density evolves according
to d

dtM = −2qAM . Using A(t) from Eq. (8) and the ini-
tial condition M(0) = 1, we integrate the rate equation
to find

M(t) = [1 + (1 + q)t]−
2q

1+q . (9)

Hence, the decay of the total mass density and the growth
of the average cluster size exhibit non-universal behav-
ior as they depend on the parameter q: M ∼ t−2q/(1+q)

and 〈k〉 = M/A ∼ tp/(1+q), respectively. Note also that
the linear average mass growth, 〈k〉 ∼ t, is recovered for
the traditional aggregation process p = 1. Similarly, the
monomer density A1(t) = [1 + (1 + q)t]−2/(1+q), obtained
from d

dtA1 = −2AA1, exhibits an algebraic decay with a
q-dependent exponent. This quantity is the probability
that a monomer avoids aggregation events up to time t.

We solve for the mass distribution of active clusters
first. To this end, we transform the distribution Ak and
introduce a modified time variable τ as follows

Ak = Ak exp
[
2
∫ t

0

dt′A(t′)
]
,

τ = p

∫ t

0

dt1 exp
[
−2
∫ t1

0

dt2A(t2)
]
. (10)

The modified time variable can be written explicitly,
τ = 1− [1 + (1 + q)t]−

p
1+q . In terms of this time variable

one has A = (1 − τ)
1+q
p , and Ak = Ak(1 − τ)−2/p. The

above transformations reduce Eq. (6) to

dAk
dτ

=
∑
i+j=k

AiAj . (11)

These equations can be solved by the generating func-
tions technique. Indeed, A(z, τ) =

∑
k≥1 e

kzAk(τ) obeys

∂A(z, τ)
∂τ

= A2(z, τ). (12)

The solution is given by A(z, τ) = A0(z)[1 − τA0(z)]−1,
with A0(z) ≡ A(z, 0) = A(z, 0) the initial generating
function. For the monodisperse initial conditions (3),
A0(z) = ez, and we find Ak = τk−1. Thus, the original
mass distribution reads

Ak(τ) = (1− τ)2/p τk−1, (13)

i.e., it remains exponential throughout the evolution. Al-
though we present this solution as a function of τ , it is
an explicit solution as τ(t) is known.

The passive cluster distribution can be obtained by in-
tegrating the corresponding master equation. Again, it
is more convenient to use the modified time variable as
Eq. (6) simplifies to d

dτ Pk = q
p (k − 1)(1 − τ)2/pτk−2.

Integrating over the modified time gives

Pk(τ) =
q

p
(k − 1)

∫ τ

0

dx (1− x)2/p xk−2. (14)

The final distribution is obtained by setting τ = 1. It
can be expresses in terms of the Euler Gamma function,

Pk(∞) =
q

p

Γ(1 + 2/p) Γ(k)
Γ(k + 2/p)

. (15)

The large mass tail of the distribution is therefore sup-
pressed algebraically according to

Pk(∞) ' qp−1Γ(1 + 2/p) k−2/p. (16)

Interestingly, given the algebraic decay Pk ∼ k−γ as
k → ∞, mass conservation restricts the exponent range
to γ > 2. In our case γ = 2/p, and since 0 < p < 1, the
entire range of acceptable exponents emerges by tuning
the only control parameter p. This behavior is reminis-
cent of a related stochastic fragmentation process where
newly-formed fragments may turn stable [16].

Despite their different limiting behaviors, both mass
distributions obey the same scaling form. This reflects
the nature of the process: the distributions are coupled,
and the “activity” in the system involves masses of the
order of the characteristic mass. To obtain the scaling
forms, we consider the limit k → ∞ and t → ∞, with
the scaling variable ξ = k(1−τ) kept finite. In this limit,
Eqs. (13) and (14) acquire the following scaling forms

Ak(t) ∼ t−
2

1+qF (ξ), Pk(t) ∼ t−
2

1+qG(ξ) (17)

with the scaling functions

F (ξ) = exp(−ξ), G(ξ) = ξ−2/pΓ(1 + 2/p, ξ). (18)

Here, Γ(a, ξ) =
∫∞
ξ
dxxa−1 e−x is the incomplete

Gamma function. The scaling variable ξ = k/k∗ contains
the characteristic mass k∗ = (1 − τ)−1 = 〈k〉 ∼ tp/(1+q).
At time t, the mass of passive clusters being produced
is on the order k∗. Masses larger than this scale are ex-
ponentially rare as G(ξ) ∝ F (ξ) = e−ξ. On the other
hand, masses smaller than this scale have already turned
passive. This is manifested by the small argument diver-
gence G(ξ) ∼ ξ−2/p, which leads to the time independent
algebraic distribution (16).

In fact, the scaling functions are unique. When the
initial mass is finite, the scaling exponents and conse-
quently, the scaling form (17) are dictated by the rate
equations for the number and mass densities. Substitut-
ing this scaling form into the rate equations (6) yields
an integro-differential equation for the scaling function∫ ξ

0
dη F (η)F (ξ − η) + ξF ′(ξ) = 0. This equation can be

solved via the Laplace transform, and as long as the first
two moments of F are finite, the solution is a simple
exponential. A similar analysis can also be carried for
the second scaling function. We conclude that the above
scaling behavior holds in general for compact initial dis-
tributions.
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IV. PRODUCT KERNEL

The aggregation process with a reaction rate propor-
tional to the mass of both reactants, K(i, j) = ij, has
been applied to polymerizations of branched polymers
[3], and to random graphs [17]. In this case, the sys-
tem exhibits a phase transition. Specifically, the mass
condenses into an infinite cluster. In the following, we
show that gelation does not occur when there is a finite
probability for clusters to turn passive.

In this case, the master equations (2) read

dAk
dt

=
p

2

∑
i+j=k

ijAiAj − kAkM,

dPk
dt

=
q

2

∑
i+j=k

ijAiAj . (19)

Here as well M(t) =
∑
k≥1 kAk(t) is the mass den-

sity of active clusters. Let us start with analysis of
the active cluster distribution. To facilitate the solu-
tion, we again employ the generating functions technique.
Specifically, the generating function of the sequence kAk,
A(z, t) =

∑
k≥1 kAk(t)ekz, evolves according to

∂A
∂t

= (pA−M)
∂A
∂z

. (20)

It is useful to re-write partial derivatives as Jacobians:
∂A
∂t = ∂(A,z)

∂(t,z) and ∂A
∂z = ∂(A,t)

∂(z,t) . Substituting these
Jacobians into Eq. (20), and using the cyclic-relation
∂z
∂t = ∂(z,A)

∂(t,A) , we arrive at

∂z

∂t
= M − pA. (21)

This equation suggests that one should solve for z(A, t).
Integrating Eq. (21) gives a solution up to an arbitrary
constant F (A): z(A, t) =

∫ t
0
dt′M(t′)−ptA+F (A). The

initial conditions (3) read A0(z) = ez or alternatively,
F (A) = lnA, thereby leading to

z(A, t) =
∫ t

0

dt′M(t′)− ptA+ lnA. (22)

Therefore, the problem is now reduced to evaluation
of the mass density of active clusters M(t). Substituting
A(z = 0, t) = M(t) into Eq. (22) gives∫ t

0

dt′M(t′)− ptM(t) + lnM(t) = 0. (23)

Differentiating this equation leads to (ptM − 1)dMdt =
qM2. Rather than solve for M(t), one can obtain an
explicit solution for t(M). Indeed, the first order dif-
ferential equation qM2 dt

dM − ptM = −1 can be easily
solved by a number of techniques, e.g., by variation of
parameters, to give

t = M−1 −Mp/q. (24)

As a check of self-consistency, we confirm that this ex-
pression agrees with the first order Taylor series for the
mass M(t) ∼= 1 − qt, implied by the master equation
(19). Equation (24) in principle gives the mass den-
sity M(t). To determine the number density A(t), we
sum up Eqs. (19) and find d

dtA = − 1+q
2 M2. Since we

have an explicit expression for t(M) rather than M(t),
we treat A as a function of M as well. The density obeys
dA
dM = 1+q

2

[
1 + p

q M
1/q
]
, which can be integrated to yield

A(M) =
M

2

[
1 + q + pM1/q

]
. (25)

Equations (24) and (25) show that both the number and
mass densities of active clusters decay similarly in the
long time limit,

A(t) ' 1 + q

2
t−1, M(t) ' t−1. (26)

The decay exponent is universal and identical to that of
the constant kernel model. In that case, however, only
the number density decayed as t−1. Eq. (26) also offers
insight to the nature of the process as the average mass
approaches a constant 〈k〉 = M/A→ 2/(1 + q). One can
verify that this quantity approaches unity in the limit
q → 1 when the active mass distribution contains only
monomers.

To complete the solution, we need to determine Ak.
Note that Eq. (22) can be re-written as A e−ptA =
exp

[
z −

∫ t
0
dt′M(t′)

]
. The Lagrange inversion formula

is quite handy here [18]. It states that the solution for
the equation ve−v = u can be expressed in terms of the
series v =

∑
n≥1

nn−1

n! un. Applying it to the above equa-
tion yields

Ak(t) =
(kpt)k−1

k · k!
exp

[
−k
∫ t

0

dt′M(t′)
]
. (27)

We again express Ak as a function of M rather than
t. The integral can be read from Eq. (23), while the
time t(M) can be read from Eq. (24). Substituting the
corresponding expressions yields the active cluster mass
distribution in terms of the variable ν = M1/q

Ak(ν) = νq
[kp(1− ν)]k−1

k · k!
e−kp(1−ν). (28)

In the large mass limit, the leading behavior of this mass
distribution is given by

Ak(ν) ' νq√
2πp2(1− ν)2

k−5/2 e−Λ(ν,q)k, (29)

with the decay constant Λ(ν, q) = qν − [q + ln(1 −
q)] − [ν + ln(1 − ν)]. This constant must be posi-
tive and this is confirmed by the expansion Λ(ν, q) =
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qν +
∑
n≥2 n

−1(qn + νn). Therefore, the mass distribu-
tion decays exponentially with mass. This in particular
implies that no gelation occurs. However, over an in-
termediate range k � Λ−1(ν, q), the mass distribution
decays algebraically, Ak ∼ t−1k−5/2. Furthermore, the
monomer density equals A1 = M e−p+pM

1/q
, and in the

long time limit A1 ' e−pt−1.
The asymptotic behavior is of special interest. In the

limit k →∞ and t→∞ with the scaling variable ξ = kqν
kept finite, the mass distribution of active clusters can be
re-casted into a “scaling-like” form

Ak(t) ∼ e−Λ(q)k k−5/2 t−1 F (ξ), (30)

with Λ(q) = −q−ln(1−q). The scaling function is simply
exponential, F (ξ) = e−ξ. The above differs from an ordi-
nary scaling form in that it is cannot be reduced from two
variables (k, t) to one rescaled variable. Furthermore, the
exponential factor e−Λk indicates that the mass distribu-
tion is appreciable over a fixed mass range of the order
1/Λ(q). This range is significant only in the (traditional
aggregation) limit q → 0. In this case, a universal alge-
braic decay Ak ∼ t−1k−5/2 is realized in the intermediate
mass range k � q−2. Despite this, it is interesting that
the distribution is characterized by a scaling-like factor,
with a scaling variable ξ = k/k∗. Note that the char-
acteristic mass grows with time, k∗ ∼ q−1t1/q, although
the average mass 〈k〉 remains finite.

Turning to passive clusters, we first note that their
number density can be obtained using A(M) of Eq. (25)
and the conservation law (4)

P (M) =
q

1 + q
− qM

2

[
1 +

p

1 + q
M1/q

]
. (31)

Alternatively, this density can be obtained by integrating
d
dtP = 1

2qM
2. While the final number density (5) is uni-

versal, the mass distribution of passive clusters is model
dependent. In the previous case of the constant kernel,
we evaluated the convolution term in the master equa-
tion explicitly. In the present case, it is more convenient
to circumvent this sum by noting that it appears in both
evolution equations. The evolution equation for Pk(t)
can therefore be simplified to d

dtPk(t) = q
p [ ddtAk+kAkM ]

for k ≥ 2. Again, we present the mass distribution in
terms of ν = M1/q

Pk(ν) =
q

p

[
Ak(ν)+

∫ 1

ν

dx
q + px

xp
[kp(1− x)]k−1

k!
e−kp(1−x)

]
.

(32)

The final distribution Pk(∞) can be written explicitly
using

∫ 1

0
dxxl−1(1 − x)k−1eβx = B(l, k) 1F1(l, l + k, β),

with B(l, k) = Γ(l)Γ(k)/Γ(l + k) the Euler Beta func-
tion and 1F1(a, b, x) the confluent hypergeometric func-
tion [19]. Additionally, it is possible to evaluate the large
mass asymptotic behavior as the above integral is dom-
inated by a region of the order O(k−1) near the upper

limit. Introducing the variable y = xk, keeping only the
leading terms, and performing the integration yields

Pk(∞) ' q1+p Γ(q)√
2πp2

k−q−3/2e−kΛ(q), (33)

with Λ(q) as in Eq. (30). Regardless of q, the tail of
the distribution decays exponentially. However, in the
limit q → 0, a universal algebraic decay Pk(∞) ∼ k−3/2

occurs in the intermediate regime k � q−2. The aver-
age mass divergence q−1 agrees with Eq. (5). Hence, the
behavior is fundamentally different than that found for
mass-independent rates as the distribution of masses of
passive clusters is characterized by a finite scale.

The passive mass distribution (32) can be re-cast into
a “scaling-like” form. Using the same scaling variable
ξ = kqν, one finds

Pk(t) ' Pk(∞)
Γ(q, ξ)
Γ(q)

. (34)

This form involves the incomplete Gamma function, as
was the case for the function G(ξ) in the case of constant
kernel (see Eq. (18)). Despite their very different nature,
the mass distributions of passive clusters in both constant
and product kernel models have a surprising similarity.
Indeed, the former distribution (14) can be written in the
form (34) with q replaced by 1 + 2/p.

V. SUM KERNEL

The aggregation process with a linear reaction rate,
K(i, j) = i + j, has been studied because of its math-
ematical simplicity as well as its relevance to polymer
formation [20] and to shear-flow coagulation [3]. The
sum kernel solution is described concisely since it involves
techniques similar to those used above. The mass distri-
butions evolve according to

dAk
dt

=
p

2
k
∑
i+j=k

AiAj −Ak(kA+M),

dPk
dt

=
q

2
k
∑
i+j=k

AiAj . (35)

We introduce the modified densities Ak and the modified
time variable τ as follows

Ak = Ak exp
[
k

∫ t

0

dt′A(t′) +
∫ t

0

dt′M(t′)
]
,

τ = p

∫ t

0

dt1 exp
[
−
∫ t1

0

dt2M(t2)
]
. (36)

These transformations reduce Eq. (35) into

dAk
dτ

=
1
2
k
∑
i+j=k

AiAj . (37)
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The generating function A(z, τ) =
∑
k≥1Ak(τ) ekz

evolves according to ∂A
∂τ = A ∂A

∂z , which in turn can be re-
written as ∂z

∂τ = −A. Thus, for the monodisperse initial
conditions, we get

z = lnA− τA. (38)

Again, the crucial part of the solution is the evaluation
of the number and mass densities A(t) and M(t). These
are related via the rate equation d

dtA = −(1 + q)AM , as
follows from Eqs. (35). Integrating over time we obtain

A
1

1+q = exp
[
−
∫ t

0

dt′M(t′)
]
. (39)

Inserting this equality into the definition of the gener-
ating function and using Eq. (36), yields A = A

q
1+q

for z = −
∫ t

0
dt′A(t′). Substituting this equality into

Eq. (38) gives

lnA
q

1+q − τA
q

1+q = −
∫ t

0

dt′A(t′). (40)

Since τ = p
∫ t

0
dt′A

1
1+q (t′) can be expressed through

A(t), we conclude that Eq. (40) is a closed equation for
A(t). It appears impossible, however, to find an explicit
solution for A(t) or for A(τ). Therefore, we proceed to
determine τ(A). Differentiating Eq. (40) with respect to
A yields

q

1 + q

(
A−1 − τA−

1
1+q

)
+
q

p
A

q
1+q

dτ

dA
= 0. (41)

In deriving Eq. (41), we have applied the chain rule
d
dA = dτ

dA
dt
dτ

d
dt , and τ = p

∫ t
0
dt′A

1
1+q (t′) to evaluate the

derivative of the right-hand side of Eq. (40).
We now multiply Eq. (41) by A−

1
1+q and then integrate

to find an explicit expression for τ(A)

τ = p
[
A−

q
1+q −A

p
1+q

]
. (42)

One can verify that this expression is consistent with the
expected short time behaviors A ∼= 1−(1+q)t and τ ∼= pt
implied by Eqs. (35) and (36). In the long time limit, the
above expression yields the leading asymptotic behavior
of the density and the mass

A(t) ' q

1 + q
t−1, M(t) ' 1

1 + q
t−1. (43)

Hence, these densities decay with the same universal ex-
ponent as in the product kernel model. Again, the av-
erage active mass remains finite 〈k〉 = M/A → 1/q for
t → ∞. One slight difference with the product kernel is
that the average mass diverges in the limit q → 0.

To determine Ak, we again employ the Lagrange inver-
sion formula. From the exponentiated form of Eq. (38),
Ae−τA = ez, we immediately find Ak = (kτ)k−1/k!, or

Ak(t) = (kτ)k−1 exp{−
∫ t

0
dt′[kA(t′) +M(t′)]}/k!. Using

Eqs. (40) and (42), the mass distribution of active clus-
ters is obtained in terms of the variable ν = A

1
1+q

Ak(ν) = ν1+q [kp(1− ν)]k−1

k!
e−kp(1−ν). (44)

Although the variable ν is quite different, the similar-
ity with the corresponding product kernel expression
(28) is striking. The monomer density in this case is
A1 = A exp[−p(1 − A1/(1+q))]. Therefore, it follows the
same t−1 asymptotic decay as in the product kernel case.

The appropriate large mass and large time limit is
again taken in such a way, that the scaling variable
ξ = kqν is kept finite. The corresponding characteristic
size grows according to k∗ ∼ t1/(1+q). The mass distri-
bution of active clusters can again be re-casted into the
following scaling-like form

Ak(t) ∼ e−Λ(q)k k−3/2 t−1 F (ξ), (45)

with Λ(q) = −q − ln(1 − q), and with the scaling func-
tion F (ξ) = e−ξ. The numerous similarities between
corresponding expressions in the product and sum ker-
nel solutions reflect the similar underlying mathematical
structure of both models. For example, the distributions
generally decay exponentially. Furthermore, in the limit
q → 0, there is an intermediate regime k � q−2, where
an algebraic decay Ak(t) ∼ k−3/2 occurs.

We analyzed the mass distribution of passive clusters
along the same lines as for the product kernel model. For
example, the final distribution is given by

Pk(∞) =
q

p

∫ 1

0

dxxq[(kq+1)+kpx]
[kp(1−x)]k−1

k!
e−kp(1−x),

(46)

which may be rewritten explicitly through the beta func-
tion and the confluent hypergeometric function. Inter-
estingly, the leading large mass behavior of the final dis-
tribution is identical to the one obtained for the product
kernel case (33). Additionally, the time-dependent be-
havior can be rewritten using the form (34) with the ar-
gument of the Gamma function now being 1 + q (instead
of q).

VI. DISCUSSION

We have analyzed a class of stochastic aggregation pro-
cesses. We have solved for the three classical reaction
kernels: 1, i+ j, and ij. Our methods are also applicable
to the linear combination K(i, j) = a + b(i + j) + cij,
with a, b, and c non-negative constants [13,14], and to
the reaction kernel K(i, j) = 2− ri− rj , where 0 < r < 1
[15].

We have observed that stochastic aggregation exhibits
a variety of universal features. For instance, the final
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number density of passive clusters is identical in all three
models. Also, the number density of active clusters de-
cays as t−1. The former feature has been explained by a
simple argument; remarkably, it remains valid even be-
yond the scope of the rate equations. It would be inter-
esting to understand the latter feature within a coher-
ent model-independent framework. For the constant and
sum kernels, we have seen that both the number den-
sity, the monomer density, and the mass density decay
according to t−1. Furthermore, the results suggest that
the following scaling-like form

Ak(t) ' ρk t−1 F (ξ), (47)

applies when the kernel grows indefinitely with the mass.
For the solvable sum and product kernels, ρk decays ex-
ponentially in the large mass limit. It will be interest-
ing to study whether this exponential behavior applies
for more general kernels, e.g., for homogeneous kernels,
K(ai, aj) = aλK(i, j), with a positive homogeneity index
λ > 0.

The simplest constant kernel model is special, and it
exhibits the most interesting behavior. We have shown
that in this case, the final mass distribution of passive
clusters is algebraic. The decay exponent is governed by
the probability p, and the entire range of decay expo-
nents, consistent with mass conservation is possible. The
time-dependent behavior follows ordinary scaling, and
the corresponding mass scale grows algebraically with a
nonuniversal (p-dependent) exponent.

Very similar behaviors were found for the product and
sum kernels. In general, the mass distributions decay
exponentially, and the average mass approaches a finite
value. In the limit q → 0, corresponding to the origi-
nal aggregation process, an algebraic mass decay occurs
in the intermediate mass range k � q−2. The time-
dependent behavior does not follow ordinary scaling, as
the distributions are dominated by time independent ex-
ponential factors. Nevertheless, a corrective factor which
is governed by an algebraically growing scale was found
to be relevant. Remarkably, although the models exhibit
different temporal behaviors, they possess the same large
mass behavior of the final mass distribution.

The above stochastic aggregation provides an inter-
polation between aggregation (p = 1) and annihilation
(p = 0) processes. Therefore, it may be used as a tool
for studying either problems. For example, the Smolu-

chowski aggregation equations may be applied to low di-
mensional processes using effective reaction rates. Hence,
the above solution of the master equations may be rele-
vant to reaction-diffusion problems.
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